United States Patent

US009449170B2

(12) (10) Patent No.: US 9,449,170 B2
Walsh 45) Date of Patent: Sep. 20, 2016
(54) INHIBITING DENIAL-OF-SERVICE 7,340,723 B2 3/2008 Antonov et al.
ATTACKS USING GROUP CONTROLS 7,380,136 B2 5/2008 Zimmer et al.
7,383,327 Bl 6/2008 Tormasov et al.
. . 7447,896 B2 11/2008 Smith et al.
(71) Applicant: Red Hat, Inc., Raleigh, NC (US) 7.461.144 Bl 12/2008 Beloussov et al.
7,496,576 B2 2/2009 Bernabeu-Auban et al.
(72) Inventor: Daniel J. Walsh, Malborough, MA 7,526,774 Bl 4/2009 Beck et al.
(US) 7,562,220 B2 7/2009 Frank et al.
7,698,400 Bl 4/2010 Beloussov et al.
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
%a.tse.nct. lls SZ)ESHS;dO Oéa;gjuswd under 33 Krsul ejt al.; VMPlants: Providing .and Managi.ng Virtual. Machi.ne
Execution Environments for Grid Computing; Published in:
(21) Appl. No.: 14/703,137 Supercomputing; 2004; Proceedings of the ACM/IEEE SC2004
Conference Date of Conference: Nov. 6-12, 2004; pp. 1-12; IEEE
(22) Filed: May 4, 2015 Xplore.*
(Continued)
(65) Prior Publication Data
US 2015/0281271 Al Oct. 1, 2015 Primary Examiner — Bradley Holder
Related U.S. Application Data (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(63) Continuation of application No. 13/029,702, filed on 7 ABSTRACT
Feb. 17, 2011, now Pat. No. 9,027,151. A processor receives within a user interface of a process
server on a first computer system a first signal that includes
(1) Int. CI. tt te an isolated ti i t withi
GOGF 21/53 (2013.01) a request to create an isolated execution environment within
041 29/06 200 6. o1 a host environment controlled by an operating system
(01) executing on a second computer system, receives a second
(52) US. ClL) signal that specifies a control group, which specifies an
CPC GO6F 21/53 (2013.01); HO4L 63/1458 amount of hardware resources on the second computer
(2013.01); GOGF 2221/ 034.((2013.01); GOGF system that are accessible to the isolated execution environ-
222172101 (2013.01); GOGF 2221/2141 ment, for the isolated execution environment. The processor
. (.2013'.01); GOGF 2221/2149 (2013.01) generates a third signal that requests creation by a processor
(58) Field of Classification Search of the second computer system of the isolated execution
CPC s G Q6F 21/53 environment and application of the control group to the
See application file for complete search history. isolated execution environment. The processor then repeat-
. edly monitors for signals, from the second computer system,
(56) References Cited that report on one of an activity and a status of the isolated

U.S. PATENT DOCUMENTS

6,446,109 B2
7,246,374 Bl

9/2002 Gupta
7/2007 Simon

execution, and displays in the user interface information
reflective of such signals.

20 Claims, 7 Drawing Sheets

REMOTE.
COMPUTING
SYSTEM
il

REMQTE

COMPUTING .

SYSTEM
104

REMOTE
COMPUTING
SYSTEM
104

NETWORK
108

SECURE
08
106

SANDBOX
TOOL
140

USER COMPUTING SYSTEM
02

US 9,449,170 B2
Page 2

(56)

7,805,752
7,886,353
7,908,653
8,312,459
8,448,170
8,627,451
8,640,187
8,726,334
8,799,985
8,862,590
2002/0161869

2002/0184520
2003/0172109
2006/0048099
2007/0006321
2007/0050766
2007/0226773
2008/0016339
2008/0235806
2009/0216768
2009/0259993

2009/0276771
2010/0058016

2010/0082926
2010/0192224
2010/0274910

2011/0047613
2011/0067105

2011/0113467
2011/0138473

2011/0138474
2011/0154431

2011/0296487
2011/0296529

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Al*

Al
Al
Al
Al
Al*
Al*
Al*
Al
Al*
Al*

Al
Al*

Al*
Al*
Al*

Al
Al*

Al
Al*

Al*
Al

Al
Al*

9/2010
2/2011
3/2011
11/2012
5/2013
1/2014
1/2014
5/2014
8/2014
10/2014
10/2002

12/2002
9/2003
3/2006
1/2007
3/2007
9/2007
1/2008
9/2008
8/2009

10/2009

11/2009
3/2010

4/2010
7/2010
10/2010

2/2011
3/2011

5/2011
6/2011

6/2011
6/2011

12/2011
12/2011

Newstadt et al.
Avraham et al.
Brickell et al.
Smith et al.
Wipfel et al.
Walsh et al.
Walsh
Neystadt et al.
Vinberg et al.

Sheehan
Griffin ..o GOG6F 9/3885
709/221
Bush et al.
Dalton et al.
Templin et al.
Bantz et al.
Pomerantz GOGF 9/455
718/1
Pouliotcocveveeene GO6F 21/53
726/1
Shuklaccoevoneee. GO6F 21/53
713/164
Bantz et al.
Zwilling GO6F 17/30557
Konduri GO6F 11/3664

717/127
Nickolov et al.

Nikaraccoo.... GOG6F 12/1027
711/163
Sahitacccooon.. GO6F 12/145
711/163
Ferri ..oooovvvvviniiinne GOGF 21/53
726/23
Ghanaie-Sichanie . HO4L. 9/3234
709/229
Walsh
Wolfe ..oooovveennn GO6F 11/302
726/23
Agarwal et al.
Yee oo GOG6F 9/445
726/26
Yee oo GOG6F 9/445
726/26
Walsh
Walsh
Bhanoo G06Q 20/356
726/26

2012/0159127 Al* 6/2012 Spradlin ... GO6F 21/53
712/208
2012/0179587 Al* 7/2012 Hill ..o GO6F 21/31
705/34

2012/0216285 Al
OTHER PUBLICATIONS

82012 Walsh

Sharif et al.; Secure in-VM monitoring using hardware virtualiza-
tion; Published in:Proceeding CCS ’09 Proceedings of the 16th
ACM conference on Computer and communications security; 2009,
pp. 477-487; ACM Digital Library.*

USPTO, Office Action for U.S. Appl. No. 12/545,500 mailed Apr.
25, 2012.

USPTO, Final Office Action for U.S. Appl. No. 12/545,500 mailed
Nov. 26, 2012.

USPTO, Office Action for U.S. Appl. No. 12/545,500 mailed Apr.
9, 2013.

USPTO, Office Action for U.S. Appl. No. 12/640,657 mailed Jun.
27, 2012.

USPTO, Final Office Action for U.S. Appl. No. 12/640,657 mailed
Dec. 3, 2012.

USPTO, Office Action for U.S. Appl. No. 12/789,554 mailed on
Aug. 16, 2012.

USPTO, Final Office Action for U.S. Appl. No. 12/789,554 mailed
Mar. 11, 2013.

USPTO, Office Action for U.S. Appl. No. 13/029,702 mailed Nov.
6, 2012.

USPTO, Office Action for U.S. Appl. No. 13/029,702 mailed Mar.
14, 2013.

USPTO, Notice of Allowance for U.S. Appl. No. 13/029,702 mailed
Jan. 7, 2015.

Yu et al—“A Feather-Weight Virtual Machine for Windows Appli-
cations”, Jul. 2007, 11 pages.

Ivan Krsul et al., “VMPlants: Providing and Managing Virtual
Machine Execution Environments for Grid Computing,” published
in Supercomputing 2004, Proceedings of the ACM/IEEE SC2004
Conference, Date of Conference: Nov. 6-12, 2004; pp. 1-12, IEEE
Xplore.

Monirul Sharif et al., “Secure In-VM Monitoring Using Hardware
Virtualization,” published in Proceeding CCS ’09 Proceedings of
the 16th ACM Conference on Computer and Communications
Security, 2009; pp. 477-487; ACM Digital Library, Chicago, Illi-
nois, USA.

* cited by examiner

U.S. Patent Sep. 20, 2016

Sheet 1 of 7

REMOTE
COMPUTING
SYSTEM
104

REMOTE
COMPUTING
SYSTEM
104

NETWORK
108

US 9,449,170 B2

REMOTE
COMPUTING
SYSTEM
104

e
ot}

USER COMPUTING SYSTEM

102

SECURE
08§
106

SANDBOX
TOOL
110

FIG. 1

U.S. Patent Sep. 20, 2016 Sheet 2 of 7 US 9,449,170 B2

APPLICATION SPACE :
210 !
1
ISOLATED USER EXECUTION :
EXECUTION ENVIRONMENT !
ENVIRONMENT 220 ;
230 :
:
]
i
225 1
i
1
1
F A]
]
i
1
l
k. ¥
API
205
SECURE OS
106,
SANDBOX
TOOL
110
Fy
L
DEVICE DRIVERS
215

FIG. 2

U.S. Patent Sep. 20, 2016 Sheet 3 of 7 US 9,449,170 B2

SECURE
03
106
SECURITY
MODULE
310
SANDBOX
TOOL
110
NAMESPACE | | PROCESS
MODULE SERVER
205 MODULE
T i1

FIG. 3

U.S. Patent Sep. 20, 2016 Sheet 4 of 7 US 9,449,170 B2

400 405
BEGIN

h 4 410
RECEIVE A REQUEST TO CREATE AN ISOLATED EXECUTION ~_/
ENVIRONMENT
1 415
DETERMINE A CGROUP TO APPLY TO THE ISOLATED —~_/
EXECUTION ENVIRONMENT
v 420
b~/

CREATE THE ISOLATED EXECUTION ENVIRONMENT

h 4 425
APPLY THE CGROUP TO THE ISOLATED EXECUTION —~_/
ENVIRONMENT
y 430
GENERATE AND DISPLAY A USER INTERFACE FOR THE -~/

ISOLATED EXECUTION ENVIRONMENT

y 435
TRACK MALICIOUS ACTIVITY OF CONTENT IN THE ISOLATED -~/
EXECUTION ENVIRONMENT
v 440

U.S. Patent Sep. 20, 2016 Sheet 5 of 7 US 9,449,170 B2

515
| &
INTERNET
SANDBOX Sandbox -
Enter Hardware Resources
530
CREATE /
525
~A CGroup
Predefined CGroups
Group 1 - 20% Processor Usage 510
- 20% Memory Usage
- NO Network /") ’“\/505
535 Group 2 - 20% Processor Usage Apply
A - 20% Memory Usage CGroup
- Network, Port 80
Group 3 -CPU 2
- Memory Range - X
- No Network
L] L L]
\
510

FIG. 5A

U.S. Patent Sep. 20, 2016 Sheet 6 of 7 US 9,449,170 B2

| @

INTERNET

N7 5
SANDBOX

&

- INTERNET

550—“j/

545

L__‘ (I:l “N_505

[] . L1
D

510

FIG. 5B

US 9,449,170 B2

Sheet 7 of 7

Sep. 20, 2016

U.S. Patent

74Y

¢c9

A¥1dsId

b

d31dvay
AY1dSId

9 "9Old

99

ﬁk

Bl9

AYYOHAIN

4SNOW

109

\
2101

IAT
FOVHOLS

N
809

F19YAOW3Y

A
ASIa
(JYvH

AHONIW NIV

W

1INA
J9OVH0LS
T19YAOINTY

/
oig

909

d0SS300Ud

ﬂ\

209

US 9,449,170 B2

1
INHIBITING DENIAL-OF-SERVICE
ATTACKS USING GROUP CONTROLS

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/029,702, filed Feb. 17, 2011, entitled “INHIBITING
DENIAL-OF-SERVICE ATTACKS USING GROUP CON-
TROLS,” which is incorporated herein by reference.

FIELD

This invention relates generally to computer security.

DESCRIPTION OF THE RELATED ART

In today’s distributed computing environments, security
is of the utmost importance. Due to the rise of wide-area
public networks, users have unlimited access to content,
e.g., data, files, applications, programs, etc., from a variety
of sources. Often, the users are unaware of the origin of the
content available in the public networks. Malicious entities
utilize this ease of accessibility and anonymity to attack the
users. For example, the malicious entities can plant viruses,
Trojans, or other malicious agents in publicly available
content in order to attack the users’ computing systems and
steal sensitive information from the users. As such, the users
must treat content from unknown sources as untrusted and
possibly dangerous.

Typically, to prevent attacks, the users utilize filtering
programs, anti-virus programs, etc. in order to identify and
block known dangerous content. These programs, however,
suffer from several weaknesses. In order to properly identity
and block the dangerous content, the filtering and anti-virus
programs must typically be configured with the identity of
the source of known dangerous content. As such, the filter-
ing and anti-virus programs lack the ability to stop previ-
ously unknown and emerging threats. Likewise, the filtering
and anti-virus programs are themselves subject to attack.
Many types of dangerous content utilize weaknesses in the
filtering and anti-virus programs to attack the users’ com-
puting systems using the filtering and anti-virus programs as
a vehicle for attacking the users’ computing systems. As
such, the users lack methods to guarantee that untrusted
content does not pose a threat.

Currently, operating systems allow a user to place access
controls on a process, such as an application program,
running on the operating system. When an action by the
application program exceeds it level of access, the operating
system blocks the action, and the application program
immediate shuts down. This prevents possible damage to the
user’s computing system, but it also prevents the user from
using the application program. To utilize the application
program, the user is required to increase the level of access
granted to the application program.

Additionally, while the operating system can limit an
application program’s level of access, the application pro-
gram still may harm the user’s computing system. One suck
attack is a denial-of-service (DOS) attack. In a DOS attack,
a dangerous application program or a harmless application
program running dangerous content attempts to render a
user’s computing system unusable. For example, the dan-
gerous application program or dangerous content can utilize
bugs in the computing system in order to consume all the
processing power and/or memory of the computing system
(e.g., buffer overflow attack, fork bomb, etc.), thereby ren-
dering the computing system unusable or crashing the

10

20

25

40

45

50

55

2

computing system. In such an attack, the dangerous appli-
cation or dangerous content can still perform the attack even
though it may have limited access because the attack targets
the basic functions of the computing system (e.g. processing
and memory). Thus, the user has no method to run the
application program and also protect the computing system
from potential DOS attacks.

BRIEF DESCRIPTION OF THE DRAWINGS

Various features of the embodiments can be more fully
appreciated, as the same become better understood with
reference to the following detailed description of the
embodiments when considered in connection with the
accompanying figures, in which:

FIG. 1 illustrates a network of computing systems in
which various embodiments of the present teachings can be
practiced;

FIG. 2 illustrates an exemplary software environment for
utilizing an isolated execution environment, according to
various embodiments of the present teachings;

FIG. 3 illustrates components of an exemplary secure
operating system including a sandbox tool, according to
various embodiments;

FIG. 4 illustrates an exemplary process for accessing
untrusted content in the isolated execution environment with
cgroup controls, according to various embodiments;

FIGS. 5A and 5B illustrate exemplary interfaces for the
isolated execution environment with cgroup controls,
according to various embodiments; and

FIG. 6 illustrates an exemplary computing system which
can implement the secure operating system and the sandbox
tool, according to various embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

For simplicity and illustrative purposes, the principles of
the present teachings are described by referring mainly to
exemplary embodiments thereof. However, one of ordinary
skill in the art would readily recognize that the same
principles are equally applicable to, and can be implemented
in, all types of information and systems, and that any such
variations do not depart from the true spirit and scope of the
present teachings. Moreover, in the following detailed
description, references are made to the accompanying fig-
ures, which illustrate specific embodiments. Electrical,
mechanical, logical and structural changes may be made to
the embodiments without departing from the spirit and scope
of the present teachings. The following detailed description
is, therefore, not to be taken in a limiting sense and the scope
of the present teachings is defined by the appended claims
and their equivalents.

Embodiments of the present teachings relate to systems
and methods for accessing, viewing, and running content,
such as data, files, programs, and applications, without
exposing a computing system to untrusted content and
possibly malicious content and protecting the computing
system from DOS attacks. More particularly, a “sandbox
tool” can create an isolated execution environment that is
isolated from other processes executing on the computing
system for accessing content. The sandbox tool can coop-
erate with components of a secure operating system (OS),
such as security enhanced LINUX (SELinux), to create an
isolated execution environment for accessing content with-
out exposing other processes and resources of the computing
system to the content. As such, the user can access the

US 9,449,170 B2

3

content without exposing the overall computing system to
any possible malicious or dangerous content.

According to embodiments, the sandbox tool can be
configured to utilize task control groups (cgroups) of the
secure OS with the isolated execution environment. A
cgroup defines the hardware resources that can be accessed
and utilized by the isolated execution environment. The
cgroups can define accessible hardware resources by par-
ticular hardware resources, amount of hardware resources,
and/or components of the hardware resources. Once a
cgroup is applied to the isolated execution environment, any
processes running in the isolated execution environment will
be confined to the hardware resources defined by the applied
cgroup. If a process running in the isolated execution
environment attempts to utilize hardware resources outside
the definition of the cgroup, the secure OS can block the
usage.

By utilizing the sandbox tool, content can be accessed on
a computing system without exposing the computing system
to any malicious agents that may be contained in the content.
Because the sandbox tool utilizes cgroup controls that limit
hardware resource usage, application programs can be
allowed to execute in the isolated execution environment,
but are prevented from highjacking all the hardware
resources of the computing system. As such, the content can
be accessed without the worry of potential DOS attacks on
the computing system.

FIG. 1 illustrates an exemplary network 100 of computing
systems, according to various embodiments. It should be
readily apparent to those of ordinary skill in the art that the
network 100 depicted in FIG. 1 represents a generalized
schematic illustration and that other components may be
added or existing components may be removed or modified.
Moreover, the network 100 may be implemented using
software components, hardware components, or combina-
tions thereof.

As illustrated in FIG. 1, the network 100 can represent the
systems of private entities, such as individuals, businesses,
partnerships, companies, corporations, etc., and public enti-
ties, such as universities, governmental agencies, etc. The
network 100 can include a number of computing systems,
such as a user computing system 102 and remote computing
systems 104. The computing systems, such as the user
computing system 102 and remote computing systems 104,
can be any-type of computing systems such as desktops,
laptops, servers, thin-clients, etc. The computing systems,
such as the user computing system 102 and remote com-
puting systems 104, can include hardware resources, such as
processors, memory, network hardware, storage devices,
and the like, and software resources, such as operating
systems (OS), application programs, and the like.

The user computer system 102 can include a secure OS
106, such as security enhanced Linux (“SELinux”), avail-
able from Red Hat™, Inc. In this example, SELinux imple-
ments a monolithic kernel which is configured to provide an
X-Window computing environment to the user computing
system 102. SELinux is a version of Linux that integrates
FLASK architectural components to provide general support
for the enforcement of many kinds of mandatory security
policies, including those based on the concepts of type
enforcement, role-based access control (“RBAC”), and
multi-level security (“MLS”).

Additionally, the secure OS 106 can implement cgroups.
Cgroups define processes’ access to and utilization of the
hardware resources of the user computing system 102. Once
a process is assigned to a cgroup, that process is limited to
the hardware resources defined by the cgroup. A cgroup can

10

15

20

25

30

35

40

45

50

55

60

65

4

define particular hardware resources that processes, which
are assigned to that cgroup, are allowed to access and utilize.
For example, a cgroup can define one or more processors in
a multi-processor system, one or more threads in a multi-
thread processor, a particular memory range, and/or other
hardware (disk drives, network devices, etc.) that the pro-
cesses are allowed to access and utilize. A cgroup can also
define amounts of the hardware resources that the processes,
which are assigned to that cgroup, are allowed to access and
utilize. For example, a cgroup can define a percentage of
processing power, a percentage of memory, and/or a per-
centage of storage that the processes are allowed to access
and utilize. A cgroup can also define components of the
hardware resources that the processes, which are assigned to
that cgroup, are allowed to access and utilize. For example,
a cgroup can define particular ports of a network device that
processes are allowed to access. If a process attempts to
utilize the hardware resources outside the definition of the
cgroup, the secure OS 106 can block the process’s access or
scale back its usage of the hardware resources.

The computing systems in environment 100 can be
located at any location, whether located at single geographic
location or remotely located from each other. In order to
communicate and share data, the user computing system 102
and the remote computing systems 104 can be coupled to
one or more networks 108. The one or more networks 108
can be any type of communications networks, whether wired
or wireless, to allow the computing system to communicate,
such as wide-area networks (e.g. Internet) or local-area
networks.

A user of the user computing system 102 can utilize the
computing environment of the secure OS 106 to operate the
computing system 102 and access content on the user
computing system 102. The content can include any number
and type of data, applications programs such as word
processing applications, web browser applications, file shar-
ing applications, electronic mail (e-mail) applications, mul-
timedia applications, chat applications, etc. Likewise, the
content can include files and data utilized by the application
programs or accessed utilizing the application programs.
The content accessed on the user computing system 102 can
be acquired from a variety of sources. For example, the
content can be installed and copied to the user computing
system 102 from media such as compact discs (CDs) and
digital versatile discs (DVDs). Likewise, the content can be
downloaded from one or more of the remote computing
systems 104 via the network 108.

The content accessed on the user computing system 102
may not be secure. For example, the user computing system
102 can acquire the content from one or more of the remote
computing systems 104. In this example, the user computing
system 102 may not know the source of the content and
cannot guarantee that the content is secure. Likewise, con-
tent installed and copied from media can be untrusted and
possibly insecure. As such, the content can be deemed to be
untrusted and can possibly be insecure.

In embodiments, regardless of whether the content is
trusted or untrusted, the user of the user computing system
102 can desire to access the content without exposing the
user computing system 102 to actions performed by the
content or malicious agents (e.g. viruses, Trojans, etc.)
possibly contained in the content. In order to allow access of
the content without exposing the user computing system
102, the user computing system 102 can include a sandbox
tool 110. The sandbox tool 110 can be configured to coop-
erate with components of the secure OS 106 to create an
isolated execution environment for accessing content

US 9,449,170 B2

5

(trusted or untrusted) without exposing other processes and
resources of the user computing system 102 to the content.
In particular, the sandbox tool 110 can be configured to
allocate resources (storage space, memory, etc) of the user
computing system 102, which are necessary to create the
isolated execution environment, and apply security polices
of the secure OS 106 to the isolated execution environment
such that content running in the isolated execution environ-
ment can only access the resources allocated to the isolated
execution environment. As such, the user can access the
content without exposing the user computing system 102 to
any possible malicious, dangerous, or damaging content.

According to embodiments, the sandbox tool 110 can be
configured to utilize cgroups when creating the isolated
execution environment. In particular, the sandbox tool 110
can determine a cgroup to apply the the isolated execution
environment, apply the cgroup to the isolated execution
environment, and cooperate with the secure OS 106 to
confine the isolated execution environment’s use of the
hardware resources to the hardware resources defined by the
applied cgroup. Accordingly, any content, accessed or
executed in the isolated execution environment, can be
prevented from highjacking all the hardware resources of the
user computing system 102.

For example, the sandbox tool 110 can apply a cgroup to
the isolated execution environment that defines the maxi-
mum processor usage to 20% and the maximum memory
usage to 30%. If dangerous content within the isolated
execution environment attempts to perform a DOS attack on
the user computing system 102 by consuming 100% pro-
cessor usage and/or 100% memory usage, the secure OS can
limit the isolated execution environment’s hardware
resource usage to the amounts specified in the cgroup
(processor usage—20%, the maximum memory usage—
30%). As such, the dangerous content can be prevented from
rendering the user computing system 102 unusable.

The content (trusted or untrusted) can be applications,
programs, files, and/or data. The sandbox tool 110 can be
configured to create the isolated execution environment to
allow the applications, programs, files, and/or data to be
accessed, executed, or viewed without exposing the user
computing system 102 to any possible malicious, dangerous,
or damaging actions of the content. For example, the appli-
cations, programs, files, and/or data can only access the
resources allocated to the isolated execution environment.

In embodiments, as illustrated, the sandbox tool 110 can
be implemented as part of the secure OS 106. Likewise, the
sandbox tool 110 can be implemented as a standalone
application program that communicates with the compo-
nents of the secure OS 106. In either case, the sandbox tool
110 can be written in any type of known open-source or
proprietary programming language, such as C, C++, JAVA,
etc.

In embodiments, the user computing system 102 can store
and execute the secure OS 106 and sandbox tool 110.
Additionally, one or more of the remote computing systems
104 can store and execute the secure operating system 106
and the sandbox tool 110. As such, the user computing
system 102 can access the secure OS 106 and the sandbox
110 stored on the one or more remote computing system 104
via the network 108 in order to access content using a
client-server model.

FIG. 2 illustrates an exemplary software environment in
accordance with various embodiments. It should be readily
apparent to those of ordinary skill in the art that software
environment depicted in FIG. 2 represents a generalized

10

15

20

25

30

35

40

45

50

55

60

65

6

schematic illustration and that other components may be
added or existing components may be removed or modified.

As shown in FIG. 2, the software environment can include
the secure OS 106, such as SELinux or similar secure
multi-tasking, multi-user operating system. A run-time envi-
ronment (not shown) can be configured to execute on the
secure OS 106. The run-time environment can provide a set
of software that supports the access of content (e.g. appli-
cations, files, data, etc.). The run-time environment can also
comprise an application program interface (“API”) 205 and
a complementary API (not shown) within an application
space 210. The API 205 can be configured to provide a set
of routines that the application space 210 uses to request
lower-level services performed by the secure OS 106. The
secure OS 106 can include a kernel (not shown) and device
drivers 215. The kernel can be configured to provide secure
access to the underlying hardware of the user computing
system 102 (e.g. processor, memory, storage, input/output
devices, network devices, etc.) through the device drivers
215.

During operation, the secure OS 106 can be configured to
create a user execution environment 220 in the application
space 210. The user execution environment 220 allows users
to interact with the the user computing system 102 to access
content such as run application and programs, view files, etc.
The secure OS 106 can be configured to perform the
necessary processes to establish the user execution environ-
ment 220 such as creating a virtual process server (e.g.
X-server) to support user interaction with the user execution
environment 220, providing access to the devices drivers
215, allocating resources (e.g. user namespace such as home
directory and temporary directory) to support the user
execution environment 220, and the like. Likewise, the
secure OS 120 can enforce security policies in the user
execution environment 220 to allow/prevent access to
underlying resources (network ports, file directories,
memory, etc.) of the user computing system 102. The secure
OS 106 can also be configured to generate and display, to the
user, a user interface, typically a “desktop” graphical user
interface (GUI), that allows the user to interact with the user
computing system 102. The desktop GUI communicates
with the virtual process server to receive input from the user
and display output to the user.

In embodiments, in order to provide access to content 225
without endangering the user computing system 102, the
sandbox tool 110 can be configured to cooperate with
components of a secure OS 106, to create an isolated
execution environment 230 for accessing content 225
(trusted or untrusted) without exposing other processes such
as the user execution environment 220 and resources of the
user computing system 102 to the content 225. In particular,
the sandbox tool 110 can be configured to allocate resources
(storage space, memory, etc) of the user computing system
102, which are necessary to create the isolated execution
environment 230. The sandbox tool 110 can be configured to
apply security polices of the secure OS 106 to the isolated
execution environment 230 such that the content 225 run-
ning in the isolated execution environment 230 can only
access the resources allocated to the isolated execution
environment 230. The isolated execution environment 230
can provide the same functionality as the user execution
environment 220, but be isolated from the user execution
environment 220 and limited in its access to the resources of
the user computing system 102. A description of the sandbox
tool 110 and secure OS 106 and a description of creating an
isolated execution environment can be found in U.S. patent
application Ser. No. 12/545,500 (U.S. Patent Application

US 9,449,170 B2

7

Publication No. 2011/0047613), entitled “SYSTEMS AND
METHODS FOR PROVIDING AN ISOLATED EXECU-
TION ENVIRONMENT FOR ACCESSING UNTRUSTED
CONTENT” to Daniel J. Walsh et al.; U.S. patent applica-
tion Ser. No. 12/640,657 (U.S. Patent Application Publica-
tion No. 2011/0154431), entitled “SYSTEMS AND METH-
ODS FOR PROVIDING MULTIPLE ISOLATED
EXECUTION ENVIRONMENTS FOR SECURELY
ACCESSING UNTRUSTED CONTENT” to Daniel I.
Walsh; and U.S. patent application Ser. No. 12/789,554
(U.S. Patent Application Publication No. 2011/0296487),
entitled “SYSTEMS AND METHODS FOR PROVIDING
AN FULLY FUNCTIONAL ISOLATED EXECUTION
ENVIRONMENT FOR ACCESSING CONTENT” to Dan-
iel J. Walsh, all of which are assigned to Red Hat Corpo-
ration, the disclosures of which are incorporated herein, in
their entirety, by reference.

In embodiments, the sandbox tool 110 can be configured
to utilize cgroups with the isolated execution environment
230 in order to control the hardware resources available to
the isolated execution environment 230. As such, any pro-
cesses running in the isolated execution environment 230,
such as potentially harmful content, will be limited to the
hardware resources defined by the applied cgroup. As a
result, the sandbox tool 110 can prevent any content
accessed or executed in the isolated execution environment
from highjacking the user computing system 102.

The sandbox tool 110 can be configured to apply cgroups
that define accessible hardware resources by particular hard-
ware resources, amount of hardware resources, and/or com-
ponents of the hardware resources. For example, a cgroup
can define one or more specific processors in a multi-
processor system that are accessible, one or more threads in
a multi-thread processor that are accessible, a particular
memory range that is accessible, and/or other hardware that
is accessible (disk drives, network devices, etc.). Likewise,
for example, a cgroup can define a percentage of processing
power that is accessible, a percentage of memory that is
accessible, and/or a percentage of storage that is accessible.
Additionally, for example, a cgroup can define particular
ports of a network device that are accessible. If a process
attempts to utilize the hardware resources outside the defi-
nition of the cgroup, the secure OS 106 can block the
process’s access or scale back its usage of the hardware
resources.

During the creation of the isolated execution environment
230, the sandbox tool 110 can be configured to determine a
cgroup to apply to the isolated execution environment 230.
The sandbox tool 110 can be configured to allow a user to
create a cgroup during the creation of the isolated execution
environment 230. To achieve this, the sandbox tool 110 can
be configured to generate and provide to the user command
line interfaces and/or graphical user interfaces (GUIs) that
enable the user to specify the hardware resources that are
accessible to the isolated execution environment 230. For
example, the user can utilize the command line interfaces or
GUIs to specify particular hardware resources to be included
in the cgroup, amount of hardware resources to be included
in the cgroup, and/or components of the hardware resources
to be included in the cgroup.

Likewise, the sandbox tool 110 and/or the secure OS 106
can be configured to maintain predefined cgroups that can be
applied to the isolated execution environment 230. The
predefined cgroups can specify various levels of access to
the hardware resources of the user computing system 102.
The predefined cgroups can define any combination of
particular hardware resources, amount of hardware

20

30

35

40

45

50

55

60

65

8

resources, and/or components of the hardware resources that
are accessible. During creation of the isolated execution
environment 230, the sandbox tool 110 can be configured to
display the predefined cgroups in the command line and/or
GUIs and receive a selection of one of the predefined
cgroups from the user. Additionally, the sandbox tool 110
can automatically apply one of the predefined cgroups to the
isolated execution environment 230 as a default.

Once determined, the sandbox tool 110 can be configured
to apply the cgroup to the isolated execution environment
230. The sandbox tool 110 can be configured to cooperate
with the secure OS 106 to mount the cgroup with the isolated
execution environment 230. As such, any processes running
in the isolated execution environment 230 will be limited to
the hardware resources specified by the applied cgroup.

In embodiments, the sandbox tool 110 can be configured
to create and/or maintain one or more isolated execution
environments 230, simultaneously. The sandbox tool 110
can create one or more isolated execution environments 230
which co-exist and have the same or different level of access,
but remain isolated from each other. Likewise, in embodi-
ments, the sandbox tool 110 can be configured to apply the
same cgroup to the multiple isolated execution environ-
ments. As such, the multiple isolated execution environ-
ments would share the defined hardware resources of the
cgroup. For example, if the cgroup defined a limit of 20%
processor usage, the combined processor usage of the mul-
tiple isolated execution environments could not exceed 20%.
Additionally, the sandbox tool 110 can be configured to
apply different cgroups to one or more of the multiple
isolated execution environments. As such, each isolated
execution environment would be limited to the hardware
resources defined by the applied cgroup.

Additionally, when assigning cgroups to the multiple
isolated execution environments, the sandbox tool 110 can
be configured to apply cgroups in a hierarchical structure.
The sandbox tool 110 can be configured to apply any overall
cgroup to all of the multiple isolated execution environments
and apply a separate cgroup to each of the multiple isolated
execution environments. If the combined hardware resource
usage of multiple isolated execution environments exceed
the hardware resources defined by the overall cgroup, the
sandbox tool 110 and/or secure OS 106 can be configured to
limit access to hardware resources of one or more of the
multiple isolated execution environments in order that the
combined hardware resource usage meets the overall
cgroup. For example, the sandbox tool 110 can apply an
overall cgroup of a maximum of 50% processor usage and
a separate cgroup to each of three multiple isolated execu-
tion environments of a maximum of 30% processor usage.
In this example, each of the three multiple isolated execution
environments would be individually limited to 30% proces-
sor usage, and the combined processor usage of all three
would be limited to 50% processor usage. If two of the three
multiple isolated execution environments were utilizing
20% each, the third of the three multiple isolated execution
environments would be limited to 10% processor usage, or
the sandbox tool 110 and/or the secure OS 106 can scale
back the processor usage of the two of the three multiple
isolated execution environments. While the above describes
one example of a hierarchical cgroup control, one skilled in
the art will realize that the sandbox tool 110 and/or the
secure OS 106 can utilize any type of hierarchical cgroups
with any number of levels in the hierarchy.

Additionally, in embodiments, the sandbox tool 110 and/
or the secure OS 106 can utilize dynamic cgroups. The
dynamic cgroups can specify conditions by which the hard-

US 9,449,170 B2

9

ware resources defined by the cgroups can change. The
conditions can be any conditions that exits in the user
computing system 102. For example, the sandbox tool 110
and/or the secure OS 106 can apply a dynamic cgroup to an
isolated execution environment that defines a limit of pro-
cessor usage to 50% on the condition that total processor
usage of the user computing system 102 does not exceed
90%. In this example, if the processor usage of the user
computing system exceeds 90% due to other processes
running outside the isolated execution environment, the
sandbox tool 110 and/or the secure OS 106 can reduce the
processor usage of the isolated execution environment to
maintain less than a 90% processor usage for the entire
system. While the above describes one example of dynamic
cgroups with reference to processor usage one skilled in the
art will realize that dynamic cgroups can be applied to any
type of hardware resource, whether particular hardware
usage or particular amounts of hardware usage. Likewise,
while the above describes one example in which hardware
usage can change based on a single condition, one skilled in
the art will realize that hardware usage can change based on
any number and types of condition that exist in the user
computing system 102.

FIG. 3 shows an exemplary block diagram of the secure
OS 106 including the sandbox tool 110 according to various
embodiments. It should be readily apparent to those of
ordinary skill in the art that the secure OS 106 depicted in
FIG. 3 represents a generalized schematic illustration and
that other components may be added or existing components
can be removed or modified. Likewise, while FIG. 3 illus-
trates the sandbox tool 110 as part of the secure OS 106,
those of ordinary skill in the art will realize that the sandbox
tool 110 can be implemented as a separate and standalone
program or application that can communicate and cooperate
with the secure OS 106, and the sandbox tool 110 can
incorporate one or more of the components of the secure OS
106.

As shown in FIG. 3, the secure OS 106 can include a
namespace module 305, a security module 310, a process
server module 315. These components can be incorporated
into the secure OS 106 and/or the sandbox tool 110 to
implement the functionality of the isolated execution envi-
ronment 230 as previously described and described in
greater detail below.

The namespace module 305 can be configured generate
and maintain the namespaces that support the user execution
environment 220 and the isolated execution environment
230. More particularly, the namespace module 305 can
create directories including a home directory (Homedir), file
directory (/tmp) and /var/tmp for the user execution envi-
ronment 220 and, when necessary, create a home directory
and tmp directory for the isolated execution environment
230. Likewise, the namespace module 305 can be configured
to remove the namespace of the isolated execution environ-
ment 230, if requested.

The security module 310 can be configured to maintain
and enforce the security policies of the secure OS 106
according to the security contexts supported by the secure
OS 106. The security policies associated with the security
contexts can define the various access levels of the processes
running on the user computing system 102. For example, the
security policies can define the various resources that are
accessible at different security contexts such as full or
limited network access, full or limited memory access, full
or limited storage access, and the like. To enforce the
security policies, the security module 310 can be configured
to associate a security context with the user execution

10

15

20

25

30

35

40

45

50

55

60

65

10

environment 220 and the isolated execution environment
230. Likewise, the security module 310 can be configured to
apply security labels, corresponding to the associated secu-
rity context, to different processes running on the user
computing system 102 by assigning a security label, for
example MCS label in SELinux, to different processes. The
security label is associated with the secure OS 106 and can
identify what security context the security module 310
should apply to the processes running on the user computer
system 102. When the processes, which are assigned a
particular security label, request access to resources of the
user computing system 102, the secure OS 106 can read the
security label and apply the associated security policy of the
associated security context to the processes, thereby restrict-
ing access of the processes to the security context. For
example, the security module 310 can allow processes
associated with a particular security context and with a
particular security label to only access the resources, for
example, limit and control access to the device drivers 215,
defined by the security policies associated with the particular
security context.

In embodiments, the process server module 315 can be
configured to implement virtual processes servers for the
processes running on the user computing system 102 such as
the user execution environment 220 and the isolated execu-
tion environment 230. For example, if secure OS 106 is
SELinux, the process server module 310 can be configured
to implement one or more X Servers which provide X
Windows interfaces that allow the user of the user comput-
ing system 102 to interact with the processes running on the
user computing system 102.

In embodiments, the sandbox tool 110 can be configured
to include the necessary logic, instructions, and commands
to implement the methods and processes of creating the
isolated execution environment 230 as described above and
below. The sandbox tool 110 can be configured to cooperate
with the secure OS 106 to create the isolated execution
environment 230 (e.g. creating/removing namespaces, iso-
lating namespaces, copying content, applying security con-
texts, accessing the untrusted content 225, and the like).
Likewise, the sandbox tool 110 can be configured to coop-
erate with the secure OS 106 to create and apply cgroups to
the isolated execution environment 230.

In embodiments, the sandbox tool 110 can be configured
to apply various cgroups to limit the usage of hardware
resources by the isolated execution environment 230. The
sandbox tool 110 can be configured to apply cgroups that
define accessible hardware resources by particular hardware
resources, amount of hardware resources, and/or compo-
nents of the hardware resources. Likewise, the sandbox tool
110 can be configured to create and/or maintain one or more
isolated execution environments 230, simultaneously. The
sandbox tool 110 can be configured to apply the same or
different cgroups to each of the multiple execution environ-
ments. The secure OS 106 can limit any processes running
in an isolated execution environment 230 to the hardware
resources specified by the applied cgroup.

In embodiments, in order to initiate creation of the iso-
lated execution environment 230, the sandbox tool 110 can
be configured to allow a user to request creation of the
isolated execution environment 230, request creation of a
cgroup for isolated execution environment 230, and/or view
and select a predefined cgroup to apply to the isolated
execution environment 230. As such, the sandbox tool 110
can be configured to include the necessary logic, instruc-
tions, and commands to generate command line interfaces
and/or GUIs that allow a user to start the sandbox tool 110,

US 9,449,170 B2

11

request creation of the isolated execution environment 230,
provide the specifications of the isolated execution environ-
ment 230, and specify the cgroup to apply to the isolated
execution environment 230. The user can specify particular
hardware resources to be included in the cgroup, amount of
hardware resources to be included in the cgroup, and/or
components of the hardware resources to be included in the
cgroup.

In embodiments, the sandbox tool 110 can be directly
accessed in order to initiate creation of the isolated execu-
tion environment 230. Additionally, the sandbox tool 110
can be linked to other applications and programs (e.g. web
browsers) to allow creation of the isolated execution envi-
ronment 230.

In embodiments, additionally, in order to initiate creation
of the isolated execution environment, the sandbox tool 110
can be configured to automatically initiate access of the
content in the isolated execution environment 230. For
example, upon the access of certain content, such as par-
ticular files or applications, the sandbox tool 110 can auto-
matically initiate creation of the isolated execution environ-
ment 230 and access of the content in the isolated execution
environment 230. As such, the sandbox tool 110 can be
configured to include the necessary logic, instructions, and
commands to command line interfaces and/or GUIs that
allow selection of types of content 225 which will automati-
cally be accessed in the isolated execution environment 230
and the cgroup to be applied to the isolated execution
environment 230.

FIG. 4 depicts an exemplary flow diagram 400 for creat-
ing an isolated execution environment with cgroup controls
in accordance with various embodiments. It should be
readily apparent to those of ordinary skill in the art that the
flow diagram 400 depicted in FIG. 4 represents a generalized
schematic illustration and that other stages can be added or
existing stages can be removed or modified.

In 405, the processing can begin. In 410, the sandbox tool
110 can receive a request to create an isolated execution
environment 230. To receive the request, the sandbox tool
110 can provide to the user an interface (command line
interface and/or GUI) to receive the request and specifica-
tions for the isolated execution environment 230.

In 415, the sandbox tool 110 can determine a cgroup to
apply to the isolated execution environment 230. For
example, the sandbox tool 110 can receive via the interface
(command line interface and/or GUI) an request to create a
cgroup and the hardware resources to be defined by the
cgroup. The user can specify particular hardware resources
to be included in the cgroup, amount of hardware resources
to be included in the cgroup, and/or components of the
hardware resources to be included in the cgroup. Likewise,
the sandbox tool 110 can provide, via the interface, a list of
predefined cgroups and the hardware resources defined by
the predefined cgroups and can receive a selection of one of
the predefined cgroups.

In 420, the sandbox tool 110 can create the isolated
execution environment 230. For example, the sandbox tool
110 can create the namespace for the isolated execution
environment 230. Then, the sandbox tool 110 can copy
necessary content and content 225 to the namespace for the
isolated execution environment 230. Next, the sandbox tool
110 can optionally create an execution file in the namespace
of the isolated execution environment 230. Then, the sand-
box tool 110 can isolate the namespace of the isolated
execution environment 230 for other namespaces such as the
namespace of the user execution environment 220. Addi-
tionally, the sandbox tool 110 can create a new virtual

40

45

50

55

12

process server for the isolated execution environment 230
and can apply the security context to the isolated execution
environment 230. The sandbox tool 110 can apply or can
instruct the security module 310 to apply security labels
within the security context to the processes running the
isolated execution environment 230. After creation, the
sandbox tool 110 can remove any data used to create the
isolated execution environment 230.

In 425, the sandbox tool 110 can apply the cgroup to the
isolated execution environment 230. The sandbox tool 110
can cooperate with the secure OS 106 to mount the cgroup
with the isolated execution environment 230. As such, any
processes running in the isolated execution environment 230
will be limited to the hardware resources specified by the
applied cgroup.

In 430, the sandbox tool 110 can generate and display a
user interface for the isolated execution environment 230.
For example, if the new virtual process server is an X
Windows server, the sandbox tool 110 can instruct, directly
or via the process server module 315, to generate and
maximize the X windows, generated by the new X Server,
in the user interface of the user execution environment 220
(e.g. desktop GUI).

In 435, the sandbox tool 110 can optionally track mali-
cious activity of the content 225. The sandbox tool 110 can
track or instruct the security module 310 to track malicious
activity from the content 225. For example, the sandbox tool
110 and/or security module 310 can monitor if the isolated
execution environment 230 accesses or exceeds the limited
hardware resources specified by the cgroup and can notify
the user via the interface.

In 440, the processing can end, repeat or return to any
point.

FIGS. 5A and 5B are exemplary screen shots of various
methods and processes of initiating creation of an isolated
execution environment with cgroup controls. As illustrated
in FIG. 5A, the secure OS 106, running on the user com-
puting system 102, can provide the user execution environ-
ment 220 with a user interface or desktop GUI 505, such as
an X Windows interfaces, that allows a user to run appli-
cations programs, view files and data, and communicate
with the remote computing systems 104. The desktop GUI
505 can include various menus and widgets for accessing
application programs, such as a tool bar 510 and application
icon 515 for accessing a web browser application program.

The user desktop 505 can include a sandbox icon 520 for
initiating the sandbox tool 110. Once the sandbox icon 520
is selected, the sandbox tool 110 can generate and display a
sandbox interface 522. The sandbox interface 522 can
include fields to allow the user to request that a cgroup be
applied to the isolated execution environment 230. As illus-
trated, for example, the sandbox interface 522 can include a
text box 525 for entering hardware resources to be defined
by a cgroup and a widget 530 for creating and applying a
cgroup as specified in the text box 525. Additionally, the
sandbox interface 522 can include a menu 535 for displaying
and selecting predefined cgroups and a widget 540 for
applying one of the predefined cgroups.

Once a new cgroup is created or a predefined cgroup is
selected, the sandbox tool 110 can create the isolated execu-
tion environment 230, as described above. As illustrated in
FIG. 5B, the sandbox tool 110 can display a user interface
545 for the isolated execution environment 230 in the
desktop GUI 505. The user interface 545 can include various
menus and widgets for accessing application programs, such
as a tool bar 548 and application icon 550 for accessing a
web browser application program. The isolated execution

US 9,449,170 B2

13

environment 230 will be limited to the hardware resources
defined in the cgroup that was applied to the isolated
execution environment 230.

FIG. 6 illustrates an exemplary block diagram of a com-
puting system 600 which can be implemented as user
computing system 102 and/or the remote computing systems
104 according to various embodiments. The functions of the
secure OS 106 and the sandbox tool 110 can be implemented
in program code and executed by the computing system 600.

As shown in FIG. 6, the computing system 600 includes
one or more processors, such as processor 602 that provide
an execution platform for embodiments of the secure OS
106 and the sandbox tool 110. Commands and data from the
processor 602 are communicated over a communication bus
604. The computing system 600 also includes a main
memory 606, for example, one or more computer readable
storage media such as a Random Access Memory (RAM),
where the secure OS 106 and the sandbox module 110 can
be executed during runtime, and a secondary memory 608.
The secondary memory 608 includes, for example, one or
more computer readable storage media such as a hard disk
drive 610 and/or a removable storage drive 612, represent-
ing a floppy diskette drive, a magnetic tape drive, a compact
disk drive, etc., where a copy of a software version of the
secure OS 106 and the sandbox tool 110 can be stored. The
removable storage drive 612 reads from and/or writes to a
removable storage unit 614 in a well-known manner. A user
can interfaces with the secure OS 106 and the sandbox tool
110 with a keyboard 616, a mouse 618, and a display 620.
A display adapter 622 interfaces with the communication
bus 604 and the display 620. The display adapter 622 also
receives display data from the processor 602 and converts
the display data into display commands for the display 620.

Certain embodiments may be performed as a computer
application program. The application program may exist in
a variety of forms both active and inactive. For example, the
application program can exist as software program(s) com-
prised of program instructions in source code, object code,
executable code or other formats; firmware program(s); or
hardware description language (HDL) files. Any of the
above can be embodied on a computer readable medium,
which include computer readable storage devices and media,
and signals, in compressed or uncompressed form. Exem-
plary computer readable storage devices and media include
conventional computer system RAM (random access
memory), ROM (read-only memory), EPROM (erasable,
programmable ROM), EEPROM (electrically erasable, pro-
grammable ROM), and magnetic or optical disks or tapes.
Exemplary computer readable signals, whether modulated
using a carrier or not, are signals that a computer system
hosting or running the present teachings can be configured
to access, including signals downloaded through the Internet
or other networks. Concrete examples of the foregoing
include distribution of executable software of the application
program on a CD-ROM or via Internet download. In a sense,
the Internet itself, as an abstract entity, is a computer
readable medium. The same is true of computer networks in
general.

While the teachings has been described with reference to
the exemplary embodiments thereof, those skilled in the art
will be able to make various modifications to the described
embodiments without departing from the true spirit and
scope. The terms and descriptions used herein are set forth
by way of illustration only and are not meant as limitations.
In particular, although the method has been described by
examples, the steps of the method may be performed in a
different order than illustrated or simultaneously. Further-

10

15

20

25

30

35

40

45

50

55

60

65

14

more, to the extent that the terms “including”, “includes”,
“having”, “has”, “with”, or variants thereof are used in either
the detailed description and the claims, such terms are
intended to be inclusive in a manner similar to the term
“comprising.” As used herein, the term “one or more of”
with respect to a listing of items such as, for example, A and
B, means A alone, B alone, or A and B. Those skilled in the
art will recognize that these and other variations are possible
within the spirit and scope as defined in the following claims
and their equivalents.
What is claimed is:
1. A method, comprising:
receiving within a user interface of a process server on a
first computer system first user input for a first signal,
the first signal comprising a request to create an iso-
lated execution environment within a host environment
on a second computer system and controlled by an
operating system executing on the second computer
system,
receiving within the user interface of the process server
second user input for a second signal, the second signal
specifying a control group for the isolated execution
environment, the control group specifying an amount
of each hardware resource of a set of hardware
resources on the second computer system that are
accessible to the isolated execution environment;
generating a third signal from the process server to the
second computer system, the third signal requesting
creation, by a processor of the second computer system,
of the isolated execution environment and application
of the control group to the isolated execution environ-
ment; and
wherein a processor of the process server on the first
computer system then repeatedly executes the follow-
ing comprising:
monitoring for a plurality of signals from the second
computer system, the plurality of signals reporting on
one of an activity and a status of the isolated execution
environment;
displaying information reflective of such signals in the
user interface;
determining from the plurality of signals whether a pro-
cess on the second computer system attempts to utilize
a hardware resource outside the control group; and
modifying access of the process if the process attempts to
utilize the hardware resource outside the control group.
2. The method of claim 1, wherein the first computer
system and the second computer system are a same com-
puter system.
3. The method of claim 1, further comprising:
identifying from one of the plurality of signals a malicious
activity.
4. The method of claim 1, wherein modifying access of
the process comprises:
blocking the process from accessing the hardware
resource outside the control group.
5. The method of claim 1, wherein modifying access of
the process comprises:
scaling back usage by the process of the set of hardware
resources specified by the control group.
6. The method of claim 1, wherein the control group is a
predefined control group.
7. The method of claim 1, wherein the set of hardware
resources comprises at least one of:
one or more particular processors in a multi-processor
system, one or more threads in a multi-thread proces-
sor, a particular memory range, one or more ports of a

US 9,449,170 B2

15

network device, a percentage of processing power, a
percentage of memory, or a percentage of storage.
8. A non-transitory computer readable storage medium
having instructions stored thereon, that when executed by a
processor of a process server on a first computer system,
cause the processor to:
receive within a user interface of the process server on the
first computer system first user input for a first signal,
the first signal comprising a request to create an iso-
lated execution environment within a host environment
on a second computer system and controlled by an
operating system executing on the second computer
system,
receive within the user interface of the process server
second user input for a second signal, the second signal
specifying a control group for the isolated execution
environment, the control group specifying an amount
of each hardware resource of a set of hardware
resources on the second computer system that are
accessible to the isolated execution environment;

generate a third signal from the process server to the
second computer system, the third signal requesting
creation, by a processor of the second computer system,
of the isolated execution environment and application
of the control group to the isolated execution environ-
ment; and

wherein the processor of the process server on the first

computer system is then repeatedly to:

monitor for a plurality of signals from the second com-

puter system, the plurality of signals reporting on one
of an activity and a status of the isolated execution
environment;

display information reflective of such signals in the user

interface;

determine from the plurality of signals whether a process

on the second computer system attempts to utilize a

hardware resource outside the control group; and
modify access of the process if the process attempts to

utilize the hardware resource outside the control group.

9. The non-transitory computer readable storage medium
of claim 8, wherein the first computer system and the second
computer system are a same computer system.

10. The non-transitory computer readable storage medium
of claim 8, wherein the processor of the process server on the
first computer system is further to:

identify from one of the plurality of signals a malicious

activity.

11. The non-transitory computer readable storage medium
of claim 8, wherein to modify access of the process, the
processor of the process server on the first computer system
is to:

block the process from accessing the hardware resource

outside the control group.

12. The non-transitory computer readable storage medium
of claim 8, wherein to modify access of the process, the
processor of the process server on the first computer system
is to:

scale back usage by the process of the set of hardware

resources specified by the control group.

13. The non-transitory computer readable storage medium
of claim 8, wherein the control group is a predefined control
group.

14. The non-transitory computer readable storage medium
of claim 8, wherein the set of hardware resources comprises
at least one of:

10

15

20

25

30

35

40

45

50

55

16

one or more particular processors in a multi-processor
system, one or more threads in a multi-thread proces-
sor, a particular memory range, one or more ports of a
network device, a percentage of processing power, a
percentage of memory, or a percentage of storage.

15. A system comprising:

a computer readable storage medium to store instructions;
and

a processor of a process server on a first computer system,
coupled to the computer readable storage medium, the
hardware processor to execute the instructions to:

receive within a user interface of the process server on the
first computer system first user input for a first signal,
the first signal comprising a request to create an iso-
lated execution environment within a host environment
on a second computer system controlled by an operat-
ing system executing on the second computer system;

receive within the user interface of the process server
second user input for a second signal, the second signal
specifying a control group for the isolated execution
environment, the control group specifying an amount
of each hardware resource of a set of hardware
resources on the second computer system that are
accessible to the isolated execution environment;

generate a third signal from the process server to the
second computer system, the third signal requesting
creation, by a hardware processor of the second com-
puter system, of the isolated execution environment
and application of the control group to the isolated
execution environment; and

wherein the hardware processor of the process server on
the first computer system then repeatedly is to:

monitor for a plurality of signals from the second com-
puter system, the plurality of signals reporting on one
of an activity and a status of the isolated execution
environment;

display information reflective of such signals in the user
interface;

determine from the plurality of signals whether a process
on the second computer system attempts to utilize a
hardware resource outside the control group; and

modify access of the process if the process attempts to
utilize the hardware resource outside the control group.

16. The system of claim 15, wherein

the first computer system and the second computer system
are a same computer system.

17. The system of claim 15, wherein to modify access of

the process, the processor of the process server on the first
computer system is to:

block the process from accessing the hardware resource
outside the control group.
18. The system of claim 15, wherein to modify access of

the process, the processor of the process server on the first
computer system is to:

scale back usage by the process of the set of hardware
resources specified by the control group.
19. The system of claim 15, wherein the control group is

a predefined control group.

20. The system of claim 15, wherein the one or more

hardware resources comprises at least one of:

one or more particular processors in a multi-processor
system, one or more threads in a multi-thread proces-
sor, a particular memory range, one or more ports of a
network device, a percentage of processing power, a
percentage of memory, or a percentage of storage.

#* #* #* #* #*

